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The application of pulsed-field-gradient (PFG) techniques
has been particularly important in providing the ability to
detect 2D and 3D NMR cross peaks from minor structural
components in synthetic organic polymers. The lack of mobility
in a large percentage of polymers leads to rapid T, relaxation
which prevents the use of pulse sequences, such as the HMBC
experiment, that operate based on coherence transfer via small,
long-range J couplings. High-temperature NMR increases mo-
lecular motion with corresponding line narrowing (e.g., poly-
ethylenes are typically analyzed at 120°C). However, until now,
the requirement for high temperature has precluded the use of
PFG methods. Here we present data from a new probe which is
capable of performing high-temperature PFG coherence selec-
tion experiments at temperatures typical of those used in many
polymer analyses. We illustrate the performance of this probe
with PFG-HMBC spectra of a copolymer from ethylene/1-hex-
ene/l-butene at 120°C. © 1999 Academic Press
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chain. However, the number and proximity of these resonanc
makes it difficult to assign peaks based on traditional compa
ison of shifts with model compounds. Two-dimensional (2D
NMR methods, particularly heteronuclear multiple-quantun
coherence (HMQC) 1, 2 and heteronuclear multiple-bond
correlation (HMBC) 8) NMR experiments, have become valu-
able techniques for elucidating chemical structures and provir
resonance assignments. These experiments have also bec
effective methods for investigating the microstructures of poly
mers 4, 5).

The application of pulsed-field-gradient (PFG) technique
(6, 7) has been particularly important in providing the abil-
ity to detect 2D and 3D NMR cross peaks from minor
structural components in synthetic organic polym@&rsX0.
The lack of mobility in a large percentage of polymers lead
to rapid T, relaxation which prevents the use of pulse
sequences, such as the HMBC experiment, that opere
based on coherence transfer via small, long-radgsu-
plings. To circumvent this problem, high-temperature NMR

NMR has had a tremendous influence on our ability 3 ysed to increase molecular motion with correspondin
characterize polymers and to understand their chemistry. Ijise narrowing (e.g., polyethylenes are typically analyzed

generally recognized that a relatively small number of k

20°C). However, until now, the requirement for high tem-

ﬁg high-temperature PFG coherence selection experimer

provided the capability to routinely detect signals from thes;t temperatures typical of those used in many polyme

structures which have low occurrence levels in a polymer

analyses. We illustrate the performance of this probe wit

' To whom correspondence should be addressed. E-mail: PeterRinaI(FéG'HMBC spectra of a copolymer from ethylene/l'hex‘
ene/l-butenel) at 120°C.
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FIG. 1.
The largest methylene peak was used as a reference (30.0 ppm).
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1D 188.6-MHz™C NMR spectra of polyethylend, The polymer used in this study was purchased from Aldrich Chemical \@p~{ 50,000).
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FIG. 2. HMBC spectra ofl (10% w/w) in 40% benzends and 1,2,4-trichlorobenzene. (a) PFG-HMBC; (b) standard phase-cycled HMBC; (c) slice frc
(a) atdy = 0.91; and (d) slice from (b) a3, = 0.91. The 2D NMR spectra were obtained at 120°C with a relaxation delay of 4.6=s1.79 ms (based on
"Jew = 140 Hz), and an acquisition time of 0.345; eight transients were averaged for each of 1024 increments .dTni@gvolution time was incremented
to provide the equivalent of a 13.9-kHz spectral window inhedimension; and a 1-kHz spectral window was used inRheimension. The gradient pulses
were 2.0 ms long and were 0.100 and 0.075 T/m (for the first and second PFG p@Jséd) The total experiment time was about 10 h. Data were zero fillec
to 4096 X 2048 and weighted with a shifted sine-bell function before Fourier transformation. The top half of each spectrum was plotted weitficél
amplification to reveal the weak signals from low occurrence structures.
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FIG.3. HMBC spectra obtained frorhat 120°C, by signal averaging 64 transientstpéncrement: (a) gradient HMBC spectrum; (b) standard phase-cycle
HMBC spectrum; slice from (a) &, = 0.91; and (d)slice from (b) até, = 0.91. The tophalf of each spectrum is plotted a&6vertical amplification to
reveal cross peaks from chain ends and butyl branches. All other acquisition parameters were the same as those used for the spectra in Fig. 2.

High-resolution ®C NMR has been successfully used tehe 188.6-MHz**C NMR spectrum ofl (Fig. 1) shows 17
assign the carbon resonances for branches in polyethylene sesbnances2Q) which are attributed to 1B(14.05 ppm), 2B
copolymers of ethylene and-olefins (L1-16. These assign- (23.37 ppm), 3B(B’, 29.57 ppm), and 4B(as,, 34.23 ppm) of
ments have been made with the aid of modified Grant-Pdhé butyl branchesug,6" (34.63 ppm),Bs,d° (27.34 ppm),
chemical shift rules 17), Lindeman—-Adams method<), vg.ed' (30.49 ppm), methine (38.24 ppm), abds ™ (30 ppm)
comparison with the spectra of model compounds, and th&the hexyl branches; and 1s (13.99 ppm), 2s (22.84 ppm), a
study of model copolymerd49). It is now possible in 1D NMR 3s (32.18 ppm) resonances from the end of the main chain. T
to detect many signals from minor components such as chaig, and ag, (4B,) carbons are very different and produce twao
ends and branches, which are present at a level of one partédaonances in the region 34—35 ppm with an intensity ratio
10°-1C°. *C NMR analyses of these materials are commonB.1. These assignments are consistent with those previou:
obtained from a sample of the swelled polymer in 1,2,4eported 16). Additional resonances can be seen from, 1B
trichlorobenzene (TCB) at 120°C. Under these condition§l1.16 ppm), 2B (26.80 ppm),ag (34.15 ppm),Bg (27.36
relaxation times are several seconds and linewidths can fyEn), and methine (39.79 ppm) of the ethyl branches.
extremely narrow. The PFG-HMBC and the standard phase-cycled HMBC 2I

The spectra shown here were obtained from a sample oNMR spectra ofl are shown in Figs. 2a and 2b, respectively
(10%, wi/w) in TCB with 40% benzené; as a lock solvent. They were both obtained by averaging eight transienttper
Data were collected on a Varian Unityplus 750-MHz spectronmcrement. These spectra exhibit correlations betweertkhe
eter with a Nalora¢H/*H/**C/X 5-mm gradient probe designedand *°C resonances of methine, methylene, and methyl grou
to operate up to 130°C. The 90° pulse widths ferand®*C  which are separated by two and three bonds. Chemical sh
were 10.5 and 30.@s, respectively. On cursory examinationcorrelations provide unequivocal resonance assignments wh
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peaks have similar chemical shifts and comparisons with th@bility. Much better spectra can be obtained, enabling detectic

shifts of model compounds are ambiguous. The plot of tleé the resonances from minor structures. When the sensitivity

aliphatic region from the standard HMBC spectrunidah Fig. good, the PFG spectra can be obtained by averaging only two

2b is dominated by artifacts associated with the C—H correlkeight transients per increment, resulting in shorter data collec-

tions from the main-chain repeat units. They are so intense thah times. In cases when the signal-to-noise is poor, nipre

the noise ridges arising from imperfect cancellation of cohdncrements can be collected with fewer transients per increment

ence from'H atoms bound td°C obscure any resonances thagtrovide a spectrum with better signal-to-noise as well as bett

would provide useful structural information. Only correlationsesolution in theF; dimension.

from the 2B, and 3B, structures can be seen. The ability of the

PFG-HMBC experiment to select the desired coherence path- ACKNOWLEDGMENTS
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